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Abstract— To improve the application-level data efficiency,
the scheduling of coflows, defined as a collection of parallel flows
sharing the same objective, is prevailing in recent data centers.
Meanwhile, optical circuit switches (OCS) are gradually applied
to provide high data rate with low power consumption. However,
so far few research outputs have covered the flow, let alone
the coflow, scheduling in the context of OCS. In this work,
we investigate coflow scheduling in OCS-based data centers.
We first derive a novel operation called regularization processed
respectively on the flow traffic demands and the flow start
times, which can be efficiently implemented and reduce the
circuit reconfiguration frequency dramatically. We then propose a
2-approximation algorithm, called Reco-Sin, for single coflow
scheduling to minimize the coflow completion time (CCT).
For multiple coflows, we derive Reco-Mul to minimize the
total weighted CCT, which can transform any non-preemptive
multi-coflow scheduling in packet switches to a scheduling scheme
in OCS. Reco-Mul can achieve a constant approximation under
the assumption that no tiny flows will be transmitted in OCS.
To get rid of this assumption, we present another multiple
coflow scheduling scheme, named Reco-Mul+, which has an
approximation ratio of O(K). Here, K is the total number of
coflows. Extensive simulations based on Facebook data traces
show that our approaches outperform state-of-the-art schemes
significantly, i.e., one single coflow can be finished up to 1.97×
faster with Reco-Sin, and multiple coflows can be completed
up to more than 2× faster with Reco-Mul and Reco-Mul+.

Index Terms— Coflow Scheduling, Optical Circuit Switch,
Approximation Algorithm.

I. INTRODUCTION

IN CURRENT distributed computing frameworks (e.g.,
MapReduce [2], Dryad [3] and Spark [4]), communication
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data flows in the network may share a common performance
objective as they are likely to correspond to the same job
from one application. To capture this kind of application-level
requirements, a new abstraction of structured data flows, called
coflow, is proposed to allow applications to convey their
semantics to the network [5]. A coflow is a collection of related
parallel individual flows that occur typically between two
stages of a multi-stage computing task, such as shuffling in the
MapReduce. To improve the application-level performance,
instead of analyzing a single flow, we turn to optimize the
coflow completion time (CCT), defined as the duration from
its arrival to the completion of all the individual flows.

Based on the development of micro-electro-mechanical
system (MEMS) techniques, optical circuit switches (OCS),
have become commercially viable in large-scale computing
systems [6]. Compared with electrical packet switch, an OCS
has much higher data transfer rate but lower power con-
sumption. Meanwhile, OCS has its own communication con-
straints. Each ingress or egress port in an OCS is restricted
to establish at most one circuit for data transmission at a
time, called the port constraint. A reconfiguration to establish
new circuits in OCS will take a fixed period, called the
reconfiguration delay and denoted as δ, typically in tens of
microseconds [7].

In order to minimize the CCT, coflow scheduling, includ-
ing single coflow scheduling (a.k.a. intra-coflow scheduling
on individual flows within a coflow) and multiple coflow
scheduling (a.k.a. inter-coflow scheduling), has been exten-
sively studied in traditional electrical packet switches [8]–[11].
In OCS, individual flow scheduling has also been frequently
studied (e.g. [7], [12]–[17]). However, there are few works on
coflow scheduling in OCS. Sunflow [15] mainly focused on
the single coflow and provided a simple heuristic policy for
multiple coflows. Compared with packet switches, the problem
of OCS-based coflow scheduling is challenging mainly due to:

• The port constraint can never be violated when establish-
ing circuits for multiple flow transmission;

• Besides the transmission order of flows/coflows, we have
to carefully establish and schedule the circuits to avoid
frequent time-consuming circuit reconfigurations;

In this article, we investigate both the single and multiple
coflow scheduling problem in OCS-based data centers, aim-
ing at minimizing the CCT and the weighted average CCT,
respectively. Our contributions can be summarized as follows:

• We propose a simple and effective operation, called
regularization, processed respectively on the flow
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TABLE I

COMPARISON AMONG THE RELATED WORK AND OUR RESULTS

traffic demands (Sec. IV-B) and the flow start times
(Sec. V-A) so that the circuit reconfiguration frequency
is reduced significantly. We further derive a scheme
of regularization-based colfow scheduling algorithms in
OCS.

• Firstly, we derive a single coflow scheduling algorithm,
named Reco-Sin, to minimize the CCT with an approx-
imation ratio of 2 (Sec. IV). To the best of our knowledge,
this is the first constant approximation algorithm for the
all-stop OCS.1

• For multiple coflow scheduling, we further propose a
novel algorithm, named Reco-Mul, to minimize the
total weighted CCT (Sec. V). We theoretically prove that
Reco-Mul can effectively transform any non-preemptive
multi-coflow scheduling scheme in packet switches with
an approximation ratio of Δ into a feasible OCS-based
coflow scheduling with an approximation ratio of Δ ·(
1 + 1

�√c�
)2

. Here, we assume that a nonzero traffic
demand in OCS is no less than c×δ, where c is a positive
constant and δ is the circuit reconfiguration delay.2

• To get rid of the assumption on the sizes of the nonzero
traffic demands, we propose another multiple coflow
scheduling algorithm named Reco-Mul+, which can
achieve O(K)-approximation ratio. K is the number of
coflows. Reco-Mul+ can also reduce the calculation
overhead before flow transmission in Reco-Mul.

• Based on real data traces from Facebook, we con-
duct extensive simulations to compare our algorithms
with state-of-the-art schemes (Sec. VI). Our simula-
tions demonstrate that the number of reconfigurations
in Reco-Sin can be reduced to only 12.67% of that
in the baselines, and hence Reco-Sin can transmit
a single coflow up to 1.97× faster. As for multiple
coflows, Reco-Mul and Reco-Mul+ outperform the
baselines dramatically, which respectively transmit mul-
tiple coflows up to 2.33× and 2.76× faster on average.

Paper Organization: We present the related work including
a comparison with our results in Sec. II. We formally define
the system model and formulate the problem in Sec. III.
Our algorithms for the single coflow and multiple coflow
scheduling are proposed in Sec. IV and Sec. V, respectively.

1In the all-stop model, a circuit reconfiguration will halt all circuits
established in the OCS until the reconfiguration is completed.

2This assumption is reasonable as in practice only elephant flows are
transferred through OCS while mice flows can be handled more efficiently by
packet switches [14].

Extensive simulations are in Sec. VI. Discussion is presented
in Sec. VII. We conclude the whole paper in Sec. VIII.

II. RELATED WORK

In this section, we present related works on circuit schedul-
ing and coflow scheduling. We list some of the most repre-
sentative related works and make a comparison in Table I.

A. Circuit Scheduling

Helios [12] and c-Through [13] proposed hybrid cir-
cuit/packet switch architectures. Both focused on the cir-
cuit management to minimize the flow completion time.
They adopted the well-known Edmonds maximum weighted
matching algorithm to schedule the circuits [25]. Later,
Porter et al. [7] proposed an improved circuit scheduling
algorithm, called Traffic Matrix Scheduling (TMS). Borrowing
the idea of BvN [26], [27], their algorithm decomposed the
traffic demand matrix into permutation matrix associated with
a series of circuit assignments for a predetermined period
of time. However, BvN decomposition did not work well
in minimizing the number of configurations, which could
incur unavoidable and significant reconfiguration delays as we
claimed in Sec. IV-A. Paper [28] achieved an approximation
algorithm for circuit scheduling under specific settings, where
the demands and reconfiguration time were integers, and
the minimum demand transmission time was assumed as an
integral multiple of the reconfiguration time. Liu et al. [14]
developed a flow scheduling algorithm called Solstice to min-
imize the maximum flow completion time particularly for the
hybrid circuit/packet networks. Solstice effectively improved
the circuit utilization to reduce the number of configurations,
and thus outperformed BvN. Our algorithm Reco-Sin, com-
pared with Solstice, reduces the CCT with even less frequent
reconfigurations. and guarantees a performance with a constant
approximation ratio.

B. Coflow Scheduling

Most previous works on network-level optimization
were agnostic on the application-level performance metrics
(e.g., [29]). which introduces negative impact on the applica-
tion performance (examples can be found in [5], [8], [9]). The
coflow abstraction was first proposed in [5] to bridge the above
gap. Some existing works on coflows focused on minimizing
the average CCT (see [5], [8]–[11], [18], [19], [30]–[34]).
Varys [8] proposed effective heuristics to schedule coflows
aiming at minimizing the average CCT. Without prior knowl-
edge of coflows, Aalo [9] adopted Discretized Coflow-Aware

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:33:35 UTC from IEEE Xplore.  Restrictions apply. 



1282 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

Least-Attained Service (D-CLAS) to separate coflows into
priority queues based on the amounts they have already
sent. CODA [10] was the first work to recognize coflows
among individual flows using machine learning techniques.
An error-tolerant coflow scheduler was then proposed and
implemented. The above papers studied heuristics-based solu-
tions and mainly focused on system implementation, which
are lack of theoretical performance guarantees.

Qiu et al. [18] proposed the first deterministic algorithm
with a constant approximation ratio for multiple coflow
scheduling, which defined the flow completion time as the
duration from a common original time point to the completion
of the flow regardless of its real arrival time. Paper [35]
further improved the approximation ratio in the setting that the
coflows arrived to the network at the same time. Essentially,
the solutions in [18] and [35] determined the scheduling order
of the coflows based on the solutions to a carefully formulated
linear program. Wang et al. [20] proposed a 2-approximation
algorithm for minimizing weighted coflow completion time
without solving LP. Li et al. [11] studied the coflow
scheduling and routing problem, and proposed the first online
algorithm with performance guarantees for the problem. Liang
and Modiano [36] assumed stochastic coflow arrivals, and
studied the optimal scaling of coflow-level delay in an N×N
input-queued switch as N → ∞. Chen et al. [19] studied
the utility optimization for coflow scheduling, who proposed
a utility-based scheduler to provide differential treatment to
coflows with different degrees of sensitivity. Tian et al. [30]
studied dependent coflows of multi-stage jobs to minimize
total weighted job completion time. Utopia [31] focused on the
near-optimal coflow scheduling with provable isolation guar-
antee. Sincronia [34] presented a near-optimal network design
for coflows that can be implemented on top of any transport
layer to support priority scheduling. Chowdhury et al. [21]
studied multiple coflow scheduling on general graph and
proposed a randomized algorithm with 2-approximation for
the single path and free path cases. Im et al. [22] formu-
lated the matroid coflow scheduling problem and got a tight
2-approximation algorithm for minimizing the weighted com-
pletion time.

C. Coflow Scheduling in OCS

As stated above, the multi-coflow scheduling problem for
packet switches has been extensively studied in the literature.
However, most results (e.g., [8], [9], [11], [18]) are based
on bandwidth sharing, where one ingress (egress) port can
simultaneously be connected to multiple egress (ingress) ports
to share the port bandwidth. Therefore, directly applying these
algorithms in OCS will break the port constraint. Some other
flow scheduling algorithms in packet switches, not bandwidth
sharing based, can be applied to OCS directly, e.g., Sincro-
nia [34] and Shafiee et al. [35]. The drawback is that they
will lead to very frequent circuit reconfigurations. Therefore,
coflow scheduling in OCS should be carefully studied.

However, so far few research results have been reported for
coflow scheduling in OCS. Huang et al. [15] might be the
first to consider coflow scheduling in optical circuit switches,
which presented a constant approximation for single coflow

TABLE II

SOME IMPORTANT NOTATIONS

scheduling and a heuristic to schedule multiple coflows in
the not-all-stop model. Zhang et al. [37] further improved the
result in the not-all-stop model, and gave a constant approx-
imation algorithm for multiple coflow scheduling. Paper [38]
investigated coflow scheduling in OCS under online settings,
where a heuristic algorithm was proposed without any theo-
retical performance guarantee. Wang et al. [23] studied the
integrated coflow and circuit scheduling problem with single
coflow. Co-scheduler [24] studied the task placement problem
in hybrid electrical/optical data center networks to minimize
CCT. To the best of our knowledge, our algorithm, Reco is the
first approximation algorithm for multiple coflow scheduling
in all-stop OCS.

III. PROBLEM FORMULATION

In this section, we present the system model and formally
define our coflow scheduling problem in OCS. The main
notations used are listed in Table II.

A. System Model

Network Model: Similar to existing works ( [8], [9], [15],
[18]), the fabric of a data center network is abstracted as
one non-blocking circuit switch with N ingress ports and N
egress ports (Fig. 1). Data flows are buffered at senders to be
transferred from the ingress to the egress ports.
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Fig. 1. A 3 × 3 Network Model: Coflow 1 and 2 are to be transmitted,
whose demand matrices are D1 and D2, respectively.

Optical Circuit Switch: To transmit data from ingress port
i to egress port j, OCS needs to establish a circuit between
the two ports. Without loss of generality, the bandwidth of a
circuit from one ingress to one egress port is normalized to
1, which is fully occupied by only one flow at a time. Recall
that circuit establishment should satisfy the port constraint,
that is to say, each ingress (egress) port can only establish
a connection to one egress (ingress) port at a time. Denote
the circuit reconfiguration delay as δ. Multiple circuits can
be reconfigured simultaneously during one reconfiguration if
they do not share a common port. Here, we adopt the all-
stop circuit switch model as [7], [13], [14], [16], where a
circuit reconfiguration would halt all transmissions in the
OCS.3 We define a circuit establishment, denoted by C(u),
as all the circuits concurrently established in an OCS. Due to
the port constraint, C(u) is in fact a matching in an N ×N
bipartite graph where the two disjoint vertex groups are the
egress and ingress ports, respectively. The duration of the
circuit establishment C(u) is denoted as dur(u). We call
the pair (C(u), dur(u)) as a circuit assignment. Furthermore,
a circuit scheduling C is composed of a sequence of circuit
assignments {(C(1), dur(1)), · · · , (C(m), dur(m))}, where
m is the number of assignments. A circuit scheduling is valid
if the port constraint is satisfied.

Coflow: A set K of coflows are to be transmitted through
the OCS. Denote K = |K| as the number of coflows. Each
coflow k ∈ K has a non-negative weight wk , which indicates
its sensitivity to the latency. Denote ak as the arrival time of
coflow k. Similar to [8], [11], [18], we assume that the flows
within one coflow arrive at the same time. An N ×N matrix
Dk is to denote the data transmission demand of coflow k,
which is called the demand matrix. Each entry dk

i,j in this
matrix represents the amount of data to be transferred from
ingress port i to egress port j. For example, in Fig. 1, d2

2,3 = 3
means the data amount in Coflow 2 to transmit from ingress 2
to egress 3 is 3. Since the bandwidth of circuits is normalized
to 1, without ambiguity, we also denote dk

i,j as the time needed
to transmit all demands from ingress port i to egress port j.
As stated in Sec. I, we assume that there is no tiny traffic
demand in OCS, i.e., dk

i,j ≥ c · δ for any i, j and k, where c
is a constant called the optical transmission threshold. We set
fk

i,j as the time when the transmission demand from port i to j
in coflow k is completed. Then, the time that the whole coflow
k is finished is defined as fk = max

i,j
fk

i,j . Hence, the coflow

3We will show that our results for multiple coflow scheduling can be
extended to the not-all-stop model (See in Sec. VII).

completion time (CCT) of coflow k, denoted as Tk, is the
duration from its arrival to the completion of transmission,
calculated as Tk = fk − ak. Since we consider the data
flows have been buffered in the senders, the arrival time of
all coflows can be assumed to be the same similar to [8], [11]
[18], i.e., ak = 0, ∀k.

B. Problem Statement

We next formally define coflow scheduling problems for a
single coflow and multiple coflows, respectively.

Problem 1 (Single Coflow Scheduling): Given a single
coflow with demand matrix D arriving at a network which
is modeled as an N × N non-blocking OCS, the problem
is to find a feasible coflow scheduling so that its CCT is
minimized.

Note that as there is only one coflow in the network (with
demand matrix D), a circuit scheduling C can be directly
transformed into a coflow scheduling S, i.e., at each time,
scheduling the traffic demand in D to transmit along all
the currently established circuits. Therefore, Problem 1 is
equivalent to finding a valid circuit scheduling to finish all
the traffic demands in D with the minimum time, which is
composed of two parts, the aggregate flow transmission time
and and the total delay caused by reconfigurations.

Problem 2 (Multiple Coflow Scheduling): In a network
modeled as an N ×N non-blocking OCS, a set K of coflows
arrive with demand matrices Dk, ∀k ∈ K. The problem is to
find a feasible coflow scheduling such that the total weighted
coflow completion time,

∑
k∈K wkTk, is minimized.

The coflow scheduling problem has already been proved
NP-hard [15], [35]. In the following, we will propose our novel
efficient algorithms to achieve approximate results.

IV. SINGLE COFLOW SCHEDULING

The main challenge for single coflow scheduling in OCS is
how to effectively decrease the reconfiguration frequency. We
leverage the classical Birkhoff-von Neumann (BvN) decom-
position, and design a novel operation, called regularization.

A. Birkhoff-Von Neumann Decomposition

According to Birkhoff’s Theorem [25], any doubly stochas-
tic matrix4 can be decomposed into a set of permutation matri-
ces with specific coefficients by Birkhoff-von Neumann (BvN)
decomposition. An example can be found in Fig. 2. Under
BvN decomposition, an N ×N matrix can be decomposed to
m ≤ N2−2N +2 permutation matrices [39]. It is NP-hard to
compute the BvN decomposition with the minimum permuta-
tion matrices [40].

Given a single coflow with demand matrix D, we can make
it as a doubly stochastic matrix D� through increasing the
values of some entries, which is called stuffing. A BvN decom-
position over D� is exactly a circuit scheduling that meets
the coflow traffic demand, i.e., each permutation matrix is a
circuit establishment whose duration is the coefficient. In fact,

4A doubly stochastic matrix is a square matrix of nonnegative real numbers,
where the sum of each rows and columns equal to a constant.
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if the reconfiguration delay is zero (i.e., δ = 0), Problem 1 can
be solved optimally by stuffing and BvN decomposition [18].
However, with non-negligible reconfiguration delays, it might
lead to a terrible CCT to get a circuit scheduling based on the
BvN decomposition in previous works (e.g., [7], [14], [18]).
This is because when preemption occurs, many tiny residual
demands are produced leading to extensive reconfigurations.
Specifically, we have the following theorem.

Theorem 1: Given a coflow with demand matrix D ∈
R

N×N , the method that generates a valid circuit scheduling
to satisfy the demand through stuffing and BvN decomposition
has an approximation ratio of Ω(N) to minimize the CCT in
OCS.

Proof: According to [41], there exists a doubly stochastic
matrix D = [di,j ] ∈ R

N×N with the minimum number of
decomposition matrices as γ(D) =

⌈
N
2

⌉ ⌈
N+1

2

⌉
. We can

construct a new matrix D� = [d�i,j ] = [di,j · �], where � is
a small enough positive constant. The minimum number of
decomposition matrices of D� is γ(D).

D� needs γ(D) decomposition matrices based on BvN,
that is to say the total reconfiguration delay is γ(D) · δ.
Thus, the coflow completion time is γ(D) · δ + ttrans =
Θ(N2) · δ + ttrans. Here, ttrans is the data transmission time
depending on the traffic demand that could be close to zero.
However, there exists a scheduling could transmit all demand
within N circuits and the CCT of this scheduling would be
at most N · δ + t�trans, where t�trans could be close to zero.
Therefore, the approximation ratio of the algorithm by directly
using primary BvN decomposition is Ω(N). �

B. Regularization on Traffic Demand

The deficiency of primitive BvN-based coflow scheduling is
due to the frequent preemption, while non-preemptive schedul-
ing may cause long circuit idle time. To address this issue,
we propose a pre-processing operation, named regularization,
which can greatly reduce the reconfiguration frequency with
little cost on the circuit idle time. Given a demand matrix
D, the process of regularization is to regularize each entry

di,j ∈ D to

⌈
di,j

δ

⌉
· δ, and get a new regularized matrix D�.5

Fig. 2 is to illustrate the benefit of regularization. A demand
matrix Dex is decomposed into 5 permutation matrices each
with a coefficient. Each permutation matrix corresponds to
a circuit configuration, and each coefficient represents the
transmission time on the corresponding configuration. We set
δ = 100. Then the time to complete Dex is (107+104+101+
2 +1)+ 5× 100 = 815. If we do regularization, the resulting
matrix D�

ex can be decomposed into 3 permutation matrices
each with a coefficient of 200. In fact, the actual transmission
time of each circuit may be less than 200, because when
one circuit finishes transmitting its demand, the OCS will
automatically reconfigure the circuit for further transmission.
In view of this, the actual completion time of D�

ex is (106 +
109 + 103) + 3 × 100 = 618, which is much less than 815,
the completion time before regularization.

5As we only increase the entry values during regularization, a valid circuit
scheduling satisfying D′ will definitely satisfy D.

Fig. 2. An example of decomposition and regularization.

Algorithm 1 Reco-Sin: Single Coflow Scheduling

1 Input coflow demand matrix D, reconfiguration delay δ
2 Output a circuit scheduling C
3 C ← ∅;
4 D� ← Run regularization and stuffing on D with δ;
5 while D� has non-zero entries do
6 Find a matching on D�, let P, α be the permutation

matrix and the coefficient derived from this matching;
7 Append (P, α) to C;
8 D� ← D� − αP ;

9 Return C;

C. Algorithm

Based on the above techniques, given the coflow demand
matrix D, our regularization-based single coflow scheduling,
called Reco-Sin, consists of following steps: 1) Regularize
D and get a doubly stochastic matrix D� by stuffing; 2) Run
BvN decomposition on D�; and 3) Regard each permutation
matrix as a circuit establishment and its coefficient as the
duration to derive a sequence of circuit assignments. The
details of Reco-Sin is described in Algorithm 1.

Initially, Algorithm 1 calls the regularization operation
(Line 4). It then iteratively calculates a decomposition (Line 6)
and computes the permutation matrix with the maximum coef-
ficient (Line 8). We efficiently compute BvN decomposition
by max-min matching which is similar to the method in [14].
Each permutation matrix and its coefficient corresponds to a
circuit assignment. We repeat the process until the demand
matrix has no non-zero entry and return the circuit scheduling
C. As discussed in Fig. 2, the actual completion time of the
demand matrix after regularization can be much less than the
value of coefficients, since the circuit will stop communication
as long as the demands on it are finished.

D. Theoretical Analysis

Here we will prove Reco-Sin is 2-approximate, which is
the first constant approximation algorithm for this problem.

Denote t�trans and t�conf as the transmission and the con-
figuration time of the scheduling obtained from Reco-Sin,
respectively, while t∗trans and t∗conf are the transmission and
the configuration time of the optimal solution respectively.

Lemma 1: In Reco-Sin, the reconfiguration time is no
greater than the transmission time, i.e., t�conf ≤ t�trans.

Proof: Let m be the number of assignments obtained
from Reco-Sin. Recall that t�conf = m · δ and
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t�trans =
∑m

i=1 dur�(i). Each di,j after regularization is an
integral multiple of δ’s. Thus, by BvN decomposition, each
circuit assignment lasts at least a time of δ, which gives
dur�(i) ≥ δ, ∀i = {1, 2, . . . , m}. This implies t�conf ≤ t�trans.

�
Set T � as the CCT given by Reco-Sin, while the optimal

is T ∗. Based on the above lemma, we have Theorem 2.
Theorem 2: Reco-Sin is 2-approximate, i.e., T � ≤ 2 ·T ∗.

Proof: Suppose D and D� are the original and the
regularized demand matrix, respectively. Let ρ and ρ� be the
maximum value of the sum of each row and column of D and
D� respectively. Let τ be the maximum number of non-zero
entries of each row or column of D. Obviously, ρ is the
lower bound on the transmission time of Problem 1, that is
ρ ≤ t∗trans. As we require at least τ times circuit establishment
for D, we have τδ ≤ t∗conf . Since, by regularization, each
entry of D is increased by at most δ, we get ρ� ≤ ρ + τδ.
The regularized algorithm strictly takes the coefficient of
BvN decomposition of D� as the duration of each circuit
assignment. And we have ρ� = t�trans. By Lemma 1, we can
derive that

T � = t�trans + t�conf ≤ 2 · t�trans = 2 · ρ�
≤ 2 · (ρ + τδ) ≤ 2 · T ∗.

This completes the proof. �
Note that, in the proof of Theorem 2, we do not make use

of the assumption that dk
i,j ≥ c ·δ set in Sec. III, which means

Theorem 2 holds for all coflow demand matrices.

V. MULTIPLE COFLOW SCHEDULING

To schedule multiple coflows in an OCS-based data center,
we first propose our algorithm, called Reco-Mul, and the
theoritical analysis on the approximation ratio.

A. Our Algorithm: Reco-Mul

To merit the benefits of the existing results for packet
switches, we design Reco-Mul that can transform any
non-preemptive multi-coflow scheduling in packet switches to
a scheduling in an OCS model with few circuit reconfigu-
rations. Here, non-preemptive scheduling in packet switches
means that there can be at most one flow transmitting at
one time on each port, and once a flow starts transmission,
it will be completed without preemption. We denote ALGp as
any algorithm that generates a non-preemptive multi-coflow
scheduling in packet switches. According to the scheduling
Sp returned by ALGp, our algorithm Reco-Mul uses a
regularization-based policy to reduce the reconfiguration fre-
quency effectively.

As Sp is a non-preemptive scheduling, it can be transformed
into a feasible scheduling in OCS by trivially introducing a
reconfiguration delay when the circuit in the OCS changes.
Directly using Sp to schedule coflows in OCS would incur
too many reconfigurations. Intuitively, if we can smartly align
the start time of the flow transmissions in Sp, we can somehow
start multiple conflict-free flows (that do not share the same
ports) at the same time such that only one circuit configuration
is needed before transmitting these flows. Fig. 3 illustrates an
example of the regularization on three conflict-free flows when

Fig. 3. An example of regularization on the flow start times.

Algorithm 2 Reco-Mul: Multiple Coflows Scheduling

1 Input coflow demand matrices D, coflow weights W ,
reconfiguration delay δ, optical transmission threshold c

2 Output a multiple coflows scheduling So

3 So ← ∅, Ŝo ← ∅;
4 Sp ← ALGp(D,W);
5 for (t1, t2, i, j, k) ∈ Sp do

6 t̂ †
1 ← t1 · 	

√
c�+ 1
	√c� ;

7 t̂1 ← 	 t̂
†

1√
c
� · √c · δ;

8 t̂2 ← t̂1 + t2 − t1;
9 Ŝo ← Ŝo ∪ (t̂1, t̂2, i, j, k);

10 Define η(Ŝo, t̂ ) as the number of reconfiguration required
in Ŝo during the time period [0, t̂ );

11 for (t̂1, t̂2, i, j, k) ∈ Ŝo do
12 So ← So ∪ (t̂1 + δη(Ŝo, t̂1), t̂2 + δη(Ŝo, t̂2), i, j, k);

13 Return So;

√
c · δ = 1. Before regularization, three reconfigurations are

needed at t = 0.5, 0.7 and 0.9, while after the start time
is regularized to 1, only one reconfiguration is needed. This
reduces the cost of reconfiguration greatly.

Here, we define a pseudo-time axis, denoted as t̂, on which
the reconfiguration delay δ shrinks to 0. The start point t̂ = 0
is corresponding to the real time point t = 0.6 We describe
our algorithm, Reco-Mul, in Algorithm 2.
Reco-Mul transforms a multi-coflow scheduling of ALGp

into a feasible scheduling (denoted as So) in OCS. During
the transformation, Reco-Mul first maps the scheduling Sp

(obtained in Line 4) to the pseudo-time axis with regular-
ization, which results in a regularized scheduling Ŝo (Line 5
to Line 9). As Ŝo is defined on the pseudo-time axis, which
ignores the reconfiguration delay, we add the reconfiguration
time into Ŝo to get the final feasible multi-coflow scheduling in
OCS, i.e., So (Line 10 to Line 12). During the regularization,
Reco-Mul stretches the start time of the flow transmissions in
Sp to a multiple of

√
c·δ (Line 6 and Line 7). Next we show the

feasibility of the coflow scheduling returned by Reco-Mul.
Lemma 2: The scheduling returned by Reco-Mul, i.e. So,

is a feasible coflow scheduling in OCS.
Proof: For any two tuples e1 = (t1, t2, i1, j1, k1) and

e2 = (t3, t4, i2, j2, k2) in Sp with port conflicts, these two

6For instance, on the real time axis, from t1 to t2 the OCS is transmitting
flow, halts for δ period of a reconfiguration and then resume transmission
at t3 = t2 + δ. Then, in our pseudo-time axis, t̂1 = t1, t̂2 = t2, while
t̂3 = t̂2 = t2 but not t3.
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elements’ transmission time must not overlap with each other
as Sp is a non-preemptive scheduling. We can assume t1 <
t2 ≤ t3 < t4 without loss of generality.

With the regularization operations (Line 5 to Line 9 in
Algorithm 2), we have

t̂1 =
⌊

t1√
cδ
· 	
√

c�+ 1
	√c�

⌋
· √cδ

and

t̂3 =
⌊

t3√
cδ
· 	
√

c�+ 1
	√c�

⌋
· √cδ.

Thus, the duration between t̂3 and t̂1 is given by

t̂3 − t̂1 ≥
⎢⎢⎢⎣ t2 · �

√
c�+1

�√c�√
cδ

⎥⎥⎥⎦ · √cδ −
⎢⎢⎢⎣ t1 · �

√
c�+1

�√c�√
cδ

⎥⎥⎥⎦ · √cδ

≥ (t2 − t1) +
√

c

c
(t2 − t1)−

√
cδ.

Recall that we assume dk
i,j ≥ c · δ. Thus we have

t2 − t1 ≥ c · δ ⇒ t̂3 − t̂1 ≥ t2 − t1.

Therefore, the new tuples ê1 = (t̂1, t̂2, i1, j1, k1) and ê2 =
(t̂3, t̂4, i2, j2, k2) do not overlap with each other in the time
range, and Ŝo still follows the port constraint. On the other
hand, the transmission time in Ŝo for each coflow remains the
same as that in Sp, and thus Ŝo also satisfies all demand matri-
ces. Because reconfiguration time does not violates the port
constraint and the demand requirement, the final scheduling
So is still feasible, which completes the proof. �

B. Theoretical Analysis of Reco-Mul

Denote OPT as the total weighted CCT of the optimal
non-preemptive scheduling in OCS, i.e., OPT =

∑K
k=1 wkT ∗

k

where T ∗
k is the CCT of coflow k in OCS. We further denote

OPT p =
∑K

k=1 wkT ∗,p
k as the total weighted CCT of the

optimal scheduling in packet switches, where T ∗,p
k is the

CCT of the coflow k in packet switches. As the optimal
non-preemptive scheduling in packet switches, OPT , has no
reconfiguration time, we have OPT p ≤ OPT .

Denote T o
k = tktrans + tkconf as the CCT of coflow k in the

scheduling So, where tktrans and tkconf are the transmission
time (including the time of waiting other coflows’ trans-
missions) and the reconfiguration time of coflow k. Denote
T p

k as the CCT of coflow k in the non-preemptive schedul-
ing in packet switches, i.e., Sp. With any non-preemptive
multi-coflow scheduling in packet switches, in the following
theorem we show Reco-Mul can transform it to a feasible
scheduling in OCS by at most losing a constant factor.

Theorem 3: Reco-Mul returns a feasible multi-coflow
scheduling in OCS with an approximation ratio of Δ ·(
1 + 1

�√c�
)2

, where Δ is the approximation ratio of ALGp.
Proof: The feasibility of the So is proved in Lemma 2.

Now, we prove its approximation ratio.
The start time of each flow in So has been regularized to

a multiple of
√

cδ. Since reconfiguration only happens at the

Algorithm 3 Reco-Mul+: Multiple Coflows Scheduling

1 Input coflow demand matrices D, coflow weights W ,
reconfiguration delay δ

2 Output a multiple coflows scheduling So

3 D� ← {Regularization(D)|∀D ∈ D};
4 So ← ∅, Ŝo ← ∅;
5 Ŝo ← ALGp(D�,W);
6 for (t̂1, t̂2, i, j, k) ∈ Ŝo do
7 So ← So ∪ (t̂1 + δη(Ŝo, t̂1), t̂2 + δη(Ŝo, t̂2), i, j, k);

8 Return So;

start of transmission, we have tkconf ≤ 1√
c
tktrans, ∀k ∈ K.

By adding tktrans at the both sides, we get

T o
k = tkconf + tktrans ≤

(
1 +

1√
c

)
tktrans. (1)

Recall the assumption of dk
i,j ≥ cδ. After the regularization

operations (Line 5 to Line 9 in Algorithm 2), the following
inequality holds:

tktrans ≤ (1 +
1
	√c� )T

p
k . (2)

This is because t̂1 is always not greater than (1 + 1
�√c�) · t1

(refer to Line 6 and Line 7 in Algorithm 2). Thus, by com-

bining the Eqn. (1) and (2), we have T o
k ≤

(
1 + 1

�√c�
)2

T p
k .

With weighted summing up all coflows, we have

∑
k∈K

wkT o
k ≤

(
1 +

1
	√c�

)2 ∑
k∈K

wkT p
k

≤ Δ ·
(

1 +
1
	√c�

)2 ∑
k∈K

wkT ∗
k .

This completes the proof. �
To the best of our knowledge, the multi-coflow scheduling
algorithm proposed by Shafiee and Ghaderi in [35] has the
best approximation ratio in packet switches (4-approximate,
i.e., Δ = 4). So, we can give the approximation ratio of
Reco-Mul in the following corollary.

Corollary 1: Reco-Mul is 4 ·
(
1 + 1

�√c�
)2

-approximate
with the algorithm given by Shafiee and Ghaderi [35].

C. Algorithm: Reco-Mul+
Reco-Mul can achieve a constant approximation ratio,

based on the assumption that a nonzero traffic demand in
OCS is no less than c × δ. Here, c is a constant. To get
rid of such assumption, we imitate the method used in
Reco-Sin and propose another algorithm Reco-Mul+ for
multiple coflow scheduling. Our main idea is to regularize
all the coflow demands before they are scheduled, which
could also reduce the overhead in Reco-Mul to calculate
the detailed scheduling strategy before flow transmission.
Reco-Mul+ is described in Algorithm 3.

The process of Reco-Mul+ uses non-preemptive
multi-coflow scheduling algorithm in packet switches as
a subroutine. First, Reco-Mul+ calls the regularization
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operation so that all demands of matrices D ∈ D are increased
to integer multiple of δ (Line 3). Then we run the algorithm
designed for the packet switch on D� and get the regularized
scheduling Ŝo (Line 5). Finally, we add the reconfiguration
time into Ŝo to get the final feasible multi-coflow scheduling
in OCS (Line 7) just like the transformation process in
Algorithm 2.

D. Theoretical Analysis of Reco-Mul+

In the analysis part we use the algorithm proposed in [35]
as the called packet switch subroutine. We define D1..k =∑k

l=1 Dl as the aggregate coflow of first k coflows. Define
ρ1..k = max{maxi{

∑
j d1..k

i,j }, maxj{
∑

i d1..k
i,j }}, which is

the effective size of the aggregate coflow defined in [35].
Set ρmax = maxk∈K ρk, ρmin = mink∈K ρk, τmax =
maxk∈K τk, and τmin = mink∈K τk. Then we have:

Theorem 4: Reco-Mul+ can achieve O(K ·
max{ρmax

ρmin
,
τmax

τmin
})-approximate for minimizing the

weighted coflow completion time, i.e.,
∑

k∈K wkTk ≤
O(K ·max{ρmax

ρmin
,
τmax

τmin
})∑

k∈K wkT ∗
k .

Proof: First, by solving LP in [35] we can get the
order between coflows. The coflows are ordered based on f̃ �

k,
the optimal completion time of LP, so that f̃ �

1 ≤ f̃ �
2 ≤ · · · ≤

f̃ �
K . According to Theorem 1 in [35], we have t�k,trans ≤

4ρ�1..k. Similar with the analysis of Theorem 2, we have

Tk ≤ T �
k ≤ 2t�k,trans ≤ 8ρ�1..k

≤ 8(
k∑

l=1

ρl +
k∑

l=1

τlδ)

≤ 8(K
ρmax

ρmin
t∗k,trans + K

τmax

τmin
t∗k,conf )

≤ O(K ·max{ρmax

ρmin
,
τmax

τmin
})T ∗

k .

Thus,∑
k∈K

wkTk ≤ O(K ·max{ρmax

ρmin
,
τmax

τmin
})

∑
k∈K

wkT ∗
k .

�
Corollary 2: Reco-Mul+ is O(K)-approximation for

minimizing the unweighted coflow completion time, i.e.,∑
k∈K Tk ≤ O(K)

∑
k∈K T ∗

k .
Proof:

∑
k∈K

Tk ≤
K∑

k=1

8(
k∑

l=1

ρl +
k∑

l=1

τlδ)

≤ 8
K∑

k=1

(K − k + 1)(ρk + τkδ)

≤ 8K

K∑
k=1

(ρk + τkδ)

≤ 8K
K∑

k=1

T ∗
k = O(K)

∑
k∈K

T ∗
k .

�

TABLE III

CATEGORY OF COFLOWS WITH DIFFERENT TRANSMISSION MODE

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to eval-
uate Reco-Sin, Reco-Mul and Reco-Mul+ based on
real workloads. Our results and analysis indicates that our
algorithms outperform the state-of-the-art baselines in almost
all the cases dramatically.

A. Methodology

Workload: The workload that consists of 526 coflows
is based on a Hive/MapReduce trace collected on a
3000-machine 150-rack cluster with 10:1 oversubscription
ratio. The trace contains the coflow information which are
its arrival time and the size of shuffle data at the reducers.
Since there is no information about the size of the data flow
from the mappers to the reducers, we uniformly allocate the
shuffle data of reducers to the mappers, similar to [11]. Similar
to Sunflow [15], we extract each record as a coflow demand
matrix, whose rows and columns represent the mappers and
reducers, respectively. In addition, we add ±5% perturbation
of flow size to simulate the real production environment.
Coflows are categorized into three types based on the density
of their demand matrices as follows. We call the density of
coflow demand matrix as DS, which represents the proportion
of non-zero elements in the matrix and has a value between 0
and 1. We then define 3 types of coflows as follows: 1) Sparse:
DS ≤ 0.05, 2) Normal: 0.05 ≤ DS ≤ 0.5, and 3) Dense:
DS ≥ 0.5. The proportions of Sparse, Normal and Dense
coflow are 86.31%, 5.13% and 8.56%, respectively.

Coflow Transmission Mode: We categorize the coflows
according to the following transmission modes: 1) a Single-
to-Single (S2S) coflow contains only one flow from one single
ingress port to one egress port; 2) a Single-to-Multiple (S2M)
coflow contains flows from a single ingress port to multiple
egress ports; 3) a Multiple-to-Single (M2S) coflow consists of
flows from multiple ingress ports to one single egress port,
and 4) a Multiple-to-Multiple (M2M) coflow consists of flows
from multiple ingress ports to multiple egress ports. We hence
categorize the coflows into four types summarized in Table III.

S2S, S2M and M2S Transmission Modes: Each flow in these
types shares one (ingress or egress) port with all other flows.
The optimal approach is to schedule them one by one. Hence,
both Solstice and Reco-Sin can achieve the optimal CCT.

M2M Transmission Modes: Table III shows that the major-
ity of the coflows in the workload are the M2M transmission
type. Their performance is critical to the overall performance.
We will see later in this section the difference between Solstice
and Reco-Sin in their performances to minimize the CCT.

Simulator: We develop a trace-driven flow-level simulator
to perform various algorithms based on the embedded LP
solver GUROBI [42]. Our experiments are conducted on a
server with a Intel Xeon E5-2620v4 CPU with 32 Gigabyte
memory and 2TB hard drive.
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Metrics: Our metrics is the normalized average
(95-percentile) weighted or unweighted CCT of a scheme
compared with our algorithms Reco-Sin, Reco-Mul
or Reco-Mul+. For example, the Normalized CCT of
Algorithm A is defined as

Normalized CCT =
the CCT of Algorithm A
the CCT of Reco-Mul

.

The lower the normalized CCT, the better the performance
of Algorithm A is. Moreover, the CCT not only consists
of the reconfiguration and the flow transmission delay, but
also the algorithmic computational delay. Our algorithms
mainly contain two steps: preprocessing (e.g., regularization)
and scheduling. Based on our simulation, the preprocessing
delay is about 1/200 of the scheduling delay. While the
scheduling is negligible compared with the flow transmission
delay. Therefore, we ignore the computational delay similar
to [16].

B. Baselines

We compare the performances of our proposed algorithms
Reco-Sin, Reco-Mul and Reco-Mul+ with the following
baselines for single and multiple coflow scheduling in mini-
mizing the (weighted) CCT.

1) Lower Bound: the theoretical lower bounm of the column
values, and τ is the maximum number of nonzero entriesd on
the CCT of a single coflow in the OCS, Tlb = ρ + τδ, where
ρ is the maximum value of the sum of the matrix row values
and τ is the maximum number of nonzero entries in rows or
columns in matrix.

2) Solstice [14]: the state-of-the-art circuit scheduling algo-
rithm which operates in two steps: first, it transforms the
demand matrix DC into a k−biostochastic matrix (stuffing)
and second, it iteratively computes a scheduling of configura-
tions (slicing operation) to complete the transmission.

3) SEBF [8] + Solstice [14]: Smallest-Effective-
Bottleneck-First (SEBF) [8] is to prioritize the coflow
with the smallest effective bottleneck flow. However, SEBF
can not be applied to the OCS directly as the bandwidth
allocation operation can not be used in the context of
OCS. Thus, we modify it a bit and combine it with
Solstice for multiple coflow scheduling. Specifically,
the algorithm of [8] is SEBF(Smallest-Effective-Bottleneck-
First)+MADD(Minimum-Allocation-for-Desired-Duration),
where SEBF is used to schedule inter-coflow and MADD
is to schedule intra-coflow. However, MADD is based
on bandwidth sharing which can not be directly used
in OCS. Therefore, we choose Solstice as the intra-coflow
scheduling strategy and take SEBF+Solstice as the baseline in
OCS.

4) LP-II-GB [18]: LP-II-GB is designed for multiple coflow
scheduling problem. It is mainly based on a time interval
indexed linear program which can be solved in polynomial
time. The algorithm solves a relaxed linear program capturing
the primitive problem, and the optimal solution is used to
derive an estimation value of the CCT for each coflow.
Based on these estimation value computed, it determines the
scheduling order of the coflows. For single coflow scheduling,
they adopt the BvN method.

Fig. 4. Performance in single coflow scheduling.

5) LP-OV-LS [35]: Besides LP-II-GB, we take another
LP-based multiple coflow scheduling algorithm LP-OV-LS
for the evaluation of the impact of regularization. Different
from LP-II-GB, LP-OV-LS first obtains a transmission order
among coflows by solving LP. LP-OV-LS is also the packet
switch algorithm currently implemented in Reco-Mul and
Reco-Mul+ during the following simulations.

6) Sincronia [34]: Same as LP-OV-LS, Sincronia also
generates the final schedule by obtaining the order between
coflows. The difference is that Sincronia only uses a simple
greedy method to get the order between coflows, which is
much more efficient than solving LP.

C. Evaluation of Reco-Sin

We set the parameters of the optical switches according to
the practical scenarios [12], [16]. The link bandwidth is set
as 100Gbps. The value of the reconfiguration delay, δ, ranges
from 1μs to 10ms, and its default value is set as 100μs.

1) Reconfiguration Frequency: The density of demand
matrix can greatly impact the reconfiguration frequency of
coflow. Thus, we fix δ as the default value, and compare
Reco-Sin’s reconfiguration frequency with Solstice’s. (In
Fig. 4(a), Fig. 4(b), from top to bottom, coflow’s density
is sparse, normal and dense.) In general, we can observe
from Fig. 4(a) that Reco-Sin has a lower reconfiguration
frequency than Solstice does. When the demand matrix of
coflow is sparse, normal and dense, Solstice spends 2.76×,
7.35× and 7.89× more reconfigurations than Reco-Sin,
respectively. Note that the performance gap becomes larger
with the density increasing. The reason is that the number
of permutation matrix after BvN decomposition grows along
with the increasing of coflow’s density. We can conclude that
Reco-Sin outperforms Solstice in optimizing reconfigura-
tion times for all types of coflows.

2) CCT: In this section, we evaluate the performance of
Reco-Sin and Solstice in minimizing the CCT. We observe
from Fig. 4(b) that Solstice needs more time to finish the same
coflow than Reco-Sin does. Specifically, Solstice needs
1.23×, 1.71× and 1.97× more time than Reco-Sin to
decompose demand matrix when scheduling sparse, normal
and dense coflows respectively. This is because of the advan-
tage of less reconfiguration frequency Reco-Sin has and that
the proportion of reconfiguration time in CCT declines with
the increase of transmission time (i.e., the increase of demand
matrix density). In short, Reco-Sin outperforms Solstice in
minimizing CCT when scheduling one single coflow.
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Fig. 5. Performance in single coflow scheduling.

3) Impact of δ: The variation of δ is an important character-
istic decided by the hardware of OCS, and it impact the CCT
directly. Similar to previous simulations, from the perspective
of reconfiguration times and CCT, we analyze the strength and
weakness of Reco-Sin and Solstice.

The curves in Figure. 5(a) present that Solstice spends more
time on reconfiguration to complete the same coflow than
Reco-Sin. In fact, the variation of δ would not have effect
on reconfiguration frequency of Solstice. The Figure. 5(a)
depicts when coflow density changes, the number of reconfigu-
rations of Solstice basically remain invariable when δ changes.
Meanwhile, the amount of reconfigurations of Reco-Sin
declines with the increase of δ. The main reason is that our
regularization operation is directly correlated with δ. When
δ increases, the elements in the coflow demand matrix will
be more aligned after regularization, which in turn reduces
the reconfiguration time. When decomposing sparse coflow,
Solstice spends 2.17 ∼ 2.85× reconfigurations as many as
Reco-Sin does. When the matrix is not sparse, the recon-
figuration demands of Solstice can be 3.42 ∼ 12.22× as many
as that of Reco-Sin.

Figure. 5(b) illustrates the performance on CCT. Here,
we adopt the theoretical lower bound of CCT as the nor-
malized benchmark and indicate performance of Reco-Sin
and Solstice. When the coflow demand matrix grows from
sparse to dense, the advantage of Reco-Sin is declining. The
reason is that the proportion of reconfiguration time in CCT
decreases when the coflow matrix is more sparse. Meanwhile,
regardless of the demand matrix density, the gap between
Reco-Sin and Solstice expands when δ increases. It is due to
that the reconfiguration time becomes dominant in CCT with
the increasing of δ, and the advantage of Reco-Sin becomes
more prominent as it has less frequent reconfigurations. As for
the different coflows shown in Fig. 5(b), Solstice can consume
6.55×, 24.64× and 24.55× time as much as the lower bound,
while the CCT of Reco-Sin consumes only 2.00×, 1.99×
and 1.94×, respectively.

D. Evaluation of Reco-Mul and Reco-Mul+
In this section, we evaluate Reco-Mul and

Reco-Mul+ in reducing the CCT and reconfiguration
frequency.

Fig. 6. Performance in minimizing unweighted CCT for multiple coflows.

1) Unweighted CCT: First, we set the coflow weights
equally and compare the performance of Reco-Mul,
Reco-Mul+, LP-II-GB and SEBF+Solstice in minimiz-
ing unweighted CCT. The results are shown in Fig. 6.
SEBF+Solstice has the worst performance; LP-II-GB comes
the second and Reco-Mul+ performs the best. When
coflows are sparse, LP-II-GB, SEBF+Solstice and Sincronia
are 8.39× (5.96×), 12.47× (10.43×) and 2.75× (2.43×)
worse than Reco-Mul, respectively. For the cases of dense
coflows, the improvements of Reco-Mul over LP-II-GB,
SEBF+Solstice and Sincronia are 1.93× (1.66×), 3.59×
(3.75×) and 1.34× (1.19×) respectively. When scheduling
all (i.e., mixed) kinds of coflows, LP-II-GB, SEBF+Solstice
and Sincronia need 3.50× (4.20×), 7.39× (6.11×) and 1.46×
(1.47×) more time than Reco-Mul, respectively. On this
basis, Reco-Mul+ has improved 15.48% (19.33%), 36.30%
(28.53%), 50.32% (39.01%) and 60.34% (41.17%) compared
to Reco-Mul for the case of sparse, normal, dense and
mixed respectively. The reason of the above performance is
similar to the one when minimizing the weighted CCT. Due
to the limited space, we omit the details. In short, Reco-Mul
and Reco-Mul+ outperform LP-II-GB, SEBF+Solstice
and Sincronia in minimizing weighted and unweighted
CCT.

2) Weighted CCT: SEBF+Solstice can be used to opti-
mize the unweighted CCT, while Reco-Mul and LP-II-GB
are for weighted (and, of course, unweighted) CCT. Thus,
in this part, we compare the performance of Reco-Mul with
LP-II-GB’s in minimizing weighted CCT. The coflow
weights are set uniformly from [0, 1]. Fig. 7 shows that,
Reco-Mul and Reco-Mul+ outperform LP-II-GB regard-
less of the coflow density level. Specifically, for the cases of
sparse, normal and dense coflows, Reco-Mul has 67.72%
(49.46%), 59.81% (55.14%) and 46.79% (39.34%) perfor-
mance improvement than LP-II-GB in minimizing the aver-
age (95-percentile) weighted CCT, while the corresponding
improvement of Reco-Mul+ are 68.40% (51.39%), 69.75%
(65.42%) and 56.17% (48.16%) respectively. When multiple
coflows contain all the coflows (i.e., coflows with all kinds
of density level), Reco-Mul is 2.33× (1.86×) better than
LP-II-GB, and Reco-Mul+ is 2.76× (2.20×) better than
LP-II-GB. The reason of Reco-Mul’s advantage is basi-
cally the alignment of the flow start time. While coflow’s
density increases, the effect of the start time alignment on
the performance reduces, which accounts for the performance
differences among the cases with different coflow sparsities.
In addition, we found although the performance of Sincronia
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Fig. 7. Performance in minimizing weighted CCT for multiple coflows.

Fig. 8. Comparison of reconfiguration frequency for multiple coflows.

is better than LP-II-GB, the normalizaed CCT of Sincronia is
still 1.56× (1.85×) longer than Reco-Mul (Reco-Mul+).

3) Reconfiguration Frequency: In Sec.VI-C, we present that
our proposed Reco-Sin needs less circuit reconfigurations
than Solstice does. In this part, we compare the performance
of LP-II-GB, SEBF+Solstice, Sincronia, Reco-Mul and
Reco-Mul+, in minimizing the reconfiguration frequency.
Fig. 8 presents our experiment results. Specifically, if we con-
sider the case where there are coflows of all different density
levels, the reconfiguration time of LP-II-GB (SEBF+Solstice,
Sincronia) is 3.23× (3.63×, 1.66×) larger than Reco-Mul’s.
When scheduling the sparse, normal and dense coflows,
the performance gaps between Reco-Mul and LP-II-GB
(SEBF+Solstice, Sincronia) are 3.49× (5.26×, 2.06×), 3.42×
(4.61×, 1.84×) and 1.64× (3.63×, 1.40×) respectively. Fur-
thermore, Reco-Mul+ only needs 60.19% ∼ 75.2% recon-
figurations compared to Reco-Mul. The reason could be the
stretching operation makes the schedule of Reco-Mul more
sparse than Reco-Mul+, which further causes the differ-
ence of CCT between Reco-Mul and Reco-Mul+. When
the coflow density increases, the performance gap between
Reco-Mul and baseline algorithm decreases. Because higher
coflow density reduces the proportion of fragmentary flow
demand, thereby diminishes the advantage of Reco-Mul.

4) Impact of δ: Similar to the simulation of Reco-Sin,
δ is also a crucial variable which can affect the performance
of Reco-Mul and Reco-Mul+. In Reco-Mul, a critical
step is stretching the scheduling order of flows to eliminate
their conflict on transmission time. Moreover, δ is directly
relevant of this stretch process. According to Fig. 9(a), when
δ increases from 1μs to 100μs, Reco-Mul gradually expands
its advantages. For instance, when δ = 1μs, LP-II-GB
(Sincronia) needs 1.16 × (0.96×) to finish multiple coflow
scheduling than Reco-Mul. When δ = 10μs and δ = 100μs,
Reco-Mul need 55.68% (124.87%) and 33.09% (75.76%)
time of LP-II-GB (Sincronia). Because the reconfiguration

Fig. 9. The impact of δ and c in multiple coflow scheduling.

frequency of Reco-Mul will decline while δ enlarges. In the
meantime, due to reconfiguration time is a product of reconfig-
uration frequency and δ, generally, the reconfiguration time of
Reco-Mul declines while δ increases to 100μs. On the other
hand, reconfiguration frequency of LP-II-GB and Sincronia
will not be affected by the variation of δ, so CCT of LP-II-GB
and Sincronia become larger with δ’s enlargement. However,
we observe that the growth of gap between Reco-Mul and
LP-II-GB and Sincronia slowdown when δ increases to 1ms
and 10ms. The reason is the excessive growth of δ. When δ
increases to ms, the reconfiguration time becomes dominant
in CCT. If δ approaches infinity, the performance gap between
Reco-Mul (Reco-Mul+) and LP-II-GB (Sincronia) will
approach to the ratio of their reconfiguration frequency.

In conclusion, Reco-Mul and Reco-Mul+ are able to
maintain the advantages when varying the δ’s. As a mat-
ter of fact, our conclusion reflects that Reco-Mul and
Reco-Mul+ are adaptable to different kinds of industrial
OCS with different reconfiguration delays.

5) Impact of the Constant c: Recall that we assume that
there is no tiny flow in OCS, and any traffic demand is at least
c·δ (Sec. III). In practice, the value of c corresponds to the real
industrial environment. As shown in Fig. 9(b), the advantage
of Reco-Mul gradually is strengthened when c increases.
For c=2 to 4, the time required by LP-II-GB for scheduling
increases from 1.74× to 1.96×. When c ranges from 4 to
6, Reco-Mul strengthens its advantages in minimizing CCT
from 1.96× to 3.43×. Thus, the simulation result validates
our theoretical analysis. The reconfiguration frequency and
time of Reco-Mul will decrease along with the increase
of c by the stretching operation. Consequently, the CCT
of Reco-Mul will continuously decrease. We also found
Sincronia is not sensitive to changes of c, e.g., the normalized
CCT of Sincronia increases from 1.32 to 1.67 for c = 2
to 6. Besides, we further set c = 20 to evaluate the case
where only relatively very large flows are considered. The
simulation results illustrate that our methods outperform the
baseline consistently.

E. Evaluation of the Impact of Regularization

In this subsection, we conduct a series of experiments to
illustrate how much regularization (on the demand matrices
of the coflows) as a preprocessing can improve the baselines.
We compare the performance of a baseline (e.g., LP-II-GB)
and its variation with regularization (e.g., denoted as Reco
(LP-II-GB)) while handling different types of coflows.
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Fig. 10. Unweighted CCT with and without regularization.

Fig. 11. Weighted CCT with and without regularization.

1) Unweighted CCT: First, we study the impact of reg-
ularization on the unweighted CCT as shown in Fig. 10.
Overall, regularization improves the performance of LP-II-GB,
LP-OV-LS, SEBF+Solstice, and Sincronia by 10.20%,
81.48%, 9.12%, and 81.31%, respectively. The improvement
of LP-OV-LS and Sincronia are the most significant, which
implies regularization is more beneficial to the fine-grained
scheduling algorithms. It should be noted that when the
demand matrices are sparse, the CCT of SEBF+Solstice even
increased after regularization. This phenomenon is because
when the demand matrices are sparse, regularization process
cannot reduce the number of switch reconfigurations.

2) Weighted CCT: We also evaluate the impact of
regularization on the weighted CCT (Fig. 11). The overall
performance improvements on weighted CCT brought by reg-
ularization to LP-II-GB, LP-OV-LS and Sincronia are respec-
tively 7.05%, 77.26% and 75.61%. This experimental result
is consistent with the result in the experiment of unweighted
CCT, which demonstrates the regularization preprocessing can
be used to handle coflows with weights effectively.

3) Reconfiguration Frequency: In order to explore the
impact of regularization on CCT, we further investigate the
variance of reconfiguration frequency under the impact of reg-
ularization (shown in Fig. 12). When all kinds of coflows are
mixed, the reduced reconfigurations of LP-II-GB, LP-OV-LS,
SEBF+Solstice and Sincronia are 22.94%, 81.48%, 12.07%,
and 78.76%, respectively. When the demand matrices are
sparse, the decreasing of reconfigurations in SEBF+Solstice
is only 0.54%, which cannot cover the negative impact of
regularization and leads to the increase of CCT.

4) Impact of δ: We also study the impact of δ on
the benefit of regularization (Fig. 13). For the mixed
types of coflows, with the growth of δ, the gap between

Fig. 12. Reconfiguration frequency with and wihtout regularization.

Fig. 13. Impact of reconfiguration with the growth of δ.

Reco-Mul+(i.e., Reco(LP-OV-LS)) and other baselines is
gradually increases, but the magnitude of the increasing
gradually decreases. Similar to the discussion in Sec. VI-D,
the gap between Reco and baseline algorithms will approach
to the ratio of their reconfiguration frequency when δ
approaches infinity. Besides, it shows that Reco(LP-OV-
LS) and Reco(Sincronia) have similar performance when δ
changes, which indicates the ordering generated by LP-OV-LS
and Sincronia are almost the same.

VII. DISCUSSION

Mice Flows

OCS is designed for the high-throughput transmission due
to its large bandwidth, and the reconfiguration process is a
natural handicap to transmit mice flows. Let τ be the maximum
number of non-zero entries of each row or column of a demand
matrix, then τδ is a lower bound of the total reconfiguration
delay, which even the optimal scheduling in OCS can not
avoid. It implies that OCS is not ideal to transmit mice
flows. Thus, in practical systems, only elephant flows are
transferred through the OCS and mice flows can be handled
more efficiently by packet switches [14]. Therefore, in the
analysis of Reco-Mul, we assume no tiny flows in OCS.
Note that here the demarcation of the mice and elephant flows
is the traffic demand of cδ in OCS, e.g., the flow with size
larger than 2.5MB will be treated as an elephant flow when
the port bandwidth= 1Tbps, c = 1 and δ = 20μs.

Not-All-Stop OCS

As stated in Sec. III-A, we consider all-stop OCS com-
monly used in previous works [7], [13], [14], [16]. Another
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TABLE IV

APPROXIMATION RATIOS FOR COFLOW SCHEDULING IN OCS

circuit establishment model is not-all-stop as adopted by
Sunflow [15], where during reconfiguration, communication
stops only on the affected ports including the ports to be set
up and those to be torn down, while the circuits unchanged
can keep transmission. Based on the current manufacturing
technique, a pure non-all-stop OCS is still hard to implement.
Intuitively, a feasible scheduling in the all-stop model is still
feasible in the not-all-stop model. Moreover, our algorithm
Reco-Mul can have the same approximation ratio in the not-
all-stop model. Note that Eqn. 3 in the approximation ratio
proof of Reco-Mul (Theorem 3) is still correct by replacing
the optional weighted CCT in the all-stop model with that in
the not-all-stop. Therefore, as shown in Table IV, combining
the results of Sunflow, the coflow scheduling in both OCS
models can achieve constant approximations.

Online Implementation

As stated in Sec. V, any non-preemptive algorithm designed
for packet switches can be transformed to a scheduling scheme
in OCS based on our preprocessing. Although the algorithm
used in Reco is offline (e.g., LP-OV-LS and Sincronia), online
coflow scheduling (e.g., [11]) can still be used as the basis
of Reco. The only additional step required is regularization,
which can be done efficiently. It is left as our future work to
investigate the performance of online scheduling schemes in
OCS.

VIII. CONCLUSION

In this article, we study the coflow scheduling problem
in the context of optical circuit switches enabled data cen-
ters. We first propose a novel operation called regularization
which is simple but effective to avoid frequent circuit recon-
figurations. Then, for single coflow scheduling, we present
Reco-Sin, an efficient 2-approximation algorithm. As for
multiple coflow scheduling, we first present Reco-Mul, based
on the regularization operation, which achieves a constant
approximation ratio to the optimum for elephant flows. To drop
the assumption on the flow size in Reco-Mul and overcome
its calculation overhead, we further propose an algorithm,
named Reco-Mul+, for multiple coflow scheduling, which
has an approximation ratio of O(K). Extensive simulations
based on real data traces show that our proposed algorithms
significantly outperform the state-of-the-art schemes in opti-
mizing the weighted CCT. In practical systems, the informa-
tion of a coflow might be known only when it arrives to
the network. To this end, one interesting future direction is
to derive online coflow scheduling schemes for OCS-based
networks.
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